Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.601
Filtrar
1.
Ecol Lett ; 27(2): e14389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38382913

RESUMO

Metabolism underpins all life-sustaining processes and varies profoundly with body size, temperature and locomotor activity. A current theory explains some of the size-dependence of metabolic rate (its mass exponent, b) through changes in metabolic level (L). We propose two predictive advances that: (a) combine the above theory with the evolved avoidance of oxygen limitation in water-breathers experiencing warming, and (b) quantify the overall magnitude of combined temperatures and degrees of locomotion on metabolic scaling across air- and water-breathers. We use intraspecific metabolic scaling responses to temperature (523 regressions) and activity (281 regressions) in diverse ectothermic vertebrates (fish, reptiles and amphibians) to show that b decreases with temperature-increased L in water-breathers, supporting surface area-related avoidance of oxygen limitation, whereas b increases with activity-increased L in air-breathers, following volume-related influences. This new theoretical integration quantitatively incorporates different influences (warming, locomotion) and respiration modes (aquatic, terrestrial) on animal energetics.


Assuntos
Peixes , Vertebrados , Animais , Temperatura , Tamanho Corporal , Oxigênio/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37726058

RESUMO

Heat-induced mortality in ectotherms may be attributed to impaired cardiac performance, specifically a collapse in maximum heart rate (fHmax), although the physiological mechanisms driving this phenomenon are still unknown. Here, we tested two proposed factors which may restrict cardiac upper thermal limits: noxious venous blood conditions and oxygen limitation. We hypothesized elevated blood [K+] (hyperkalemia) and low oxygen (hypoxia) would reduce cardiac upper thermal limits in a marine teleost (Girella nigricans), while high oxygen (hyperoxia) would increase thermal limits. We also hypothesized higher acclimation temperatures would exacerbate the harmful effects of an oxygen limitation. Using the Arrhenius breakpoint temperature test, we measured fHmax in acutely warmed fish under control (saline injected) and hyperkalemic conditions (elevated plasma [K+]) while exposed to hyperoxia (200% air saturation), normoxia (100% air saturation), or hypoxia (20% air saturation). We also measured ventricle lactate content and venous blood oxygen partial pressure (PO2) to determine if there were universal thresholds in either metric driving cardiac collapse. Elevated [K+] was not significantly correlated with any cardiac thermal tolerance metric. Hypoxia significantly reduced cardiac upper thermal limits (Arrhenius breakpoint temperature [TAB], peak fHmax, temperature of peak heart rate [TPeak], and temperature at arrhythmia [TARR]). Hyperoxia did not alter cardiac thermal limits compared to normoxia. There was no evidence of a species-wide threshold in ventricular [lactate] or venous PO2. Here, we demonstrate that oxygen limits cardiac thermal tolerance only in instances of hypoxia, but that other physiological processes are responsible for causing temperature-induced heart failure when oxygen is not limited.


Assuntos
Hiperóxia , Animais , Temperatura , Peixes , Oxigênio/fisiologia , Hipóxia , Lactatos
3.
Adv Exp Med Biol ; 1395: 379-384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527666

RESUMO

Reliable measurements using modern techniques and consensus in experimental design have enabled the assessment of novel data sets for normal maternal and foetal respiratory physiology at term. These data sets include (a) principal factors affecting placental gas transfer, e.g., maternal blood flow through the intervillous space (IVS) (500 mL/min) and foeto-placental blood flow (480 mL/min), and (b) O2, CO2 and pH levels in the materno-placental and foeto-placental circulation. According to these data, the foetus is adapted to hypoxaemic hypoxia. Despite flat oxygen partial pressure (pO2) gradients between the blood of the IVS and the umbilical arteries of the foetus, adequate O2 delivery to the foetus is maintained by the higher O2 affinity of the foetal blood, high foetal haemoglobin (HbF) concentrations, the Bohr effect, the double-Bohr effect, and high foeto-placental (=umbilical) blood flow. Again, despite flat gradients, adequate CO2 removal from the foetus is maintained by a high diffusion capacity, high foeto-placental blood flow, the Haldane effect, and the double-Haldane effect. Placental respiratory gas exchange is perfusion-limited, rather than diffusion-limited, i.e., O2 uptake depends on O2 delivery.


Assuntos
Dióxido de Carbono , Feto , Troca Materno-Fetal , Oxigênio , Placenta , Circulação Placentária , Feminino , Humanos , Gravidez , Dióxido de Carbono/fisiologia , Sangue Fetal/fisiologia , Hemoglobina Fetal/fisiologia , Feto/fisiologia , Hipóxia/fisiopatologia , Troca Materno-Fetal/fisiologia , Oxigênio/fisiologia , Oxiemoglobinas/fisiologia , Placenta/irrigação sanguínea , Placenta/fisiologia , Circulação Placentária/fisiologia , Nascimento a Termo/fisiologia
4.
PLoS One ; 17(10): e0273402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264932

RESUMO

BACKGROUND: The pathophysiology of COVID-19 remains poorly understood. We aimed to estimate the contribution of intrapulmonary shunting and ventilation-to-perfusion (VA/Q) mismatch using a mathematical model to construct oxygen-haemoglobin dissociation curves (ODCs). METHODS: ODCs were constructed using transcutaneous pulse oximetry at two different fractions of inspired oxygen (FiO2). 199 patients were included from two large district general hospitals in the South East of England from 1st to 14th January 2021. The study was supported by the National Institute of Health Research (NIHR) Clinical Research Network. RESULTS: Overall mortality was 29%. Mean age was 68.2 years (SEM 1·2) with 46% female. Median shunt on admission was 17% (IQR 8-24.5); VA/Q was 0.61 (IQR 0.52-0.73). Shunt was 37.5% higher in deaths (median 22%, IQR 9-29) compared to survivors (16%, 8-21; p = 0.0088) and was a predictor of mortality (OR 1.04; 95% CI 1.01-1.07). Admission oxygen saturations were more strongly predictive of mortality (OR 0.91, 95% CI 0.87-0.96). There was no difference in VA/Q mismatch between deaths (0.60; IQR 0.50-0.73) and survivors (0.61; IQR 0.52-0.73; p = 0.63) and it was not predictive of mortality (OR 0.68; 95% CI 0.18-2.52; p = 0.55). Shunt negatively correlated with admission oxygen saturation (R -0.533; p<0.0001) whereas VA/Q was not (R 0.1137; p = 0.12). INTERPRETATION: Shunt, not VA/Q mismatch, was associated with worsening hypoxia, though calculating shunt was not of prognostic value. This study adds to our understanding of the pathophysiology of hypoxaemia in COVID-19. Our inexpensive and reliable technique may provide further insights into the pathophysiology of hypoxia in other respiratory diseases.


Assuntos
COVID-19 , Pneumopatias , Humanos , Feminino , Idoso , Masculino , Relação Ventilação-Perfusão/fisiologia , Hipóxia , Oximetria/métodos , Oxigênio/fisiologia
6.
Br J Anaesth ; 129(4): 581-587, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963819

RESUMO

BACKGROUND: Hypoxaemia during general anaesthesia can cause harm. Apnoeic oxygenation extends safe apnoea time, reducing risk during airway management. We hypothesised that low-flow nasal oxygenation (LFNO) would extend safe apnoea time similarly to high-flow nasal oxygenation (HFNO), whilst allowing face-mask preoxygenation and rescue. METHODS: A high-fidelity, computational, physiological model was used to examine the progression of hypoxaemia during apnoea in virtual models of pregnant women in and out of labour, with BMI of 24-50 kg m-2. Subjects were preoxygenated with oxygen 100% to reach end-tidal oxygen fraction (FE'O2) of 60%, 70%, 80%, or 90%. When apnoea started, HFNO or LFNO was commenced. To simulate varying degrees of effectiveness of LFNO, periglottic oxygen fraction (FgO2) of 21%, 60%, or 100% was configured. HFNO provided FgO2 100% and oscillating positive pharyngeal pressure. RESULTS: Application of LFNO (FgO2 100%) after optimal preoxygenation (FE'O2 90%) resulted in similar or longer safe apnoea times than HFNO FE'O2 80% in all subjects in labour. For BMI of 24, the time to reach SaO2 90% with LFNO was 25.4 min (FE'O2 90%/FgO2 100%) vs 25.4 min with HFNO (FE'O2 80%). For BMI of 50, the time was 9.9 min with LFNO (FE'O2 90%/FgO2 100%) vs 4.3 min with HFNO (FE'O2 80%). A similar finding was seen in subjects with BMI ≥40 kg m-2 not in labour. CONCLUSIONS: There is likely to be clinical benefit to using LFNO, given that LFNO and HFNO extend safe apnoea time similarly, particularly when BMI ≥40 kg m-2. Additional benefits to LFNO include the facilitation of rescue face-mask ventilation and ability to monitor FE'O2 during preoxygenation.


Assuntos
Apneia , Oxigênio , Manuseio das Vias Aéreas/métodos , Apneia/terapia , Simulação por Computador , Feminino , Humanos , Hipóxia/prevenção & controle , Oxigênio/fisiologia , Oxigenoterapia , Gravidez
7.
J Physiol ; 600(18): 4089-4104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35930370

RESUMO

Over the last 100 years, high-altitude researchers have amassed a comprehensive understanding of the global cardiac responses to acute, prolonged and lifelong hypoxia. When lowlanders are exposed to hypoxia, the drop in arterial oxygen content demands an increase in cardiac output, which is facilitated by an elevated heart rate at the same time as ventricular volumes are maintained. As exposure is prolonged, haemoconcentration restores arterial oxygen content, whereas left ventricular filling and stroke volume are lowered as a result of a combination of reduced blood volume and hypoxic pulmonary vasoconstriction. Populations native to high-altitude, such as the Sherpa in Asia, exhibit unique lifelong or generational adaptations to hypoxia. For example, they have smaller left ventricular volumes compared to lowlanders despite having larger total blood volume. More recent investigations have begun to explore the mechanisms underlying such adaptive responses by combining novel imaging techniques with interventions that manipulate cardiac preload, afterload, and/or contractility. This work has revealed the contributions and interactions of (i) plasma volume constriction; (ii) sympathoexcitation; and (iii) hypoxic pulmonary vasoconstriction with respect to altering cardiac loading, or otherwise preserving or enhancing biventricular systolic and diastolic function even amongst high altitude natives with excessive erythrocytosis. Despite these advances, various areas of investigation remain understudied, including potential sex-related differences in response to high altitude. Collectively, the available evidence supports the conclusion that the human heart successfully adapts to hypoxia over the short- and long-term, without signs of myocardial dysfunction in healthy humans, except in very rare cases of maladaptation.


Assuntos
Aclimatação , Altitude , Aclimatação/fisiologia , Adaptação Fisiológica , Humanos , Hipóxia , Oxigênio/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-35897466

RESUMO

Background: We investigated the effects of single (SL-ET) and double leg (DL-ET) high-intensity interval training on O2 deficit (O2Def) and mean response time (MRT) during square-wave moderate-intensity exercise (DL-MOD), and on the amplitude of V˙O2p slow component (SCamp), during heavy intensity exercise (DL-HVY), on 33 patients (heart transplant = 13, kidney transplanted = 11 and liver transplanted = 9). Methods: Patients performed DL incremental step exercise to exhaustion, two DL-MOD tests, and a DL-HVY trial before and after 24 sessions of SL-ET (n = 17) or DL-ET (n = 16). Results: After SL-ET, O2Def, MRT and SCamp decreased by 16.4% ± 13.7 (p = 0.008), by 15.6% ± 13.7 (p = 0.004) and by 35% ± 31 (p = 0.002), respectively. After DL-ET, they dropped by 24.9% ± 16.2 (p < 0.0001), by 25.9% ± 13.6 (p < 0.0001) and by 38% ± 52 (p = 0.0003), respectively. The magnitude of improvement of O2Def, MRT, and SCamp was not significantly different between SL-ET and DL-ET after training. Conclusions: We conclude that SL-ET is as effective as DL-ET if we aim to improve V˙O2p kinetics in transplanted patients and suggest that the slower, V˙O2p kinetics is mainly caused by the impairment of peripherals exchanges likely due to the immunosuppressive medications and disuse.


Assuntos
Treino Aeróbico , Consumo de Oxigênio , Monofosfato de Adenosina , Exercício Físico/fisiologia , Teste de Esforço , Humanos , Cinética , Oxigênio/fisiologia , Consumo de Oxigênio/fisiologia , Resistência Física
9.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628663

RESUMO

Pluripotent stem cells (PSC) possess unlimited proliferation, self-renewal, and a differentiation capacity spanning all germ layers. Appropriate culture conditions are important for the maintenance of self-renewal, pluripotency, proliferation, differentiation, and epigenetic states. Oxygen concentrations vary across different human tissues depending on precise cell location and proximity to vascularisation. The bulk of PSC culture-based research is performed in a physiologically hyperoxic, air oxygen (21% O2) environment, with numerous reports now detailing the impact of a physiologic normoxia (physoxia), low oxygen culture in the maintenance of stemness, survival, morphology, proliferation, differentiation potential, and epigenetic profiles. Epigenetic mechanisms affect multiple cellular characteristics including gene expression during development and cell-fate determination in differentiated cells. We hypothesized that epigenetic marks are responsive to a reduced oxygen microenvironment in PSCs and their differentiation progeny. Here, we evaluated the role of physoxia in PSC culture, the regulation of DNA methylation (5mC (5-methylcytosine) and 5hmC (5-hydroxymethylcytosine)), and the expression of regulatory enzyme DNMTs and TETs. Physoxia enhanced the functional profile of PSC including proliferation, metabolic activity, and stemness attributes. PSCs cultured in physoxia revealed the significant downregulation of DNMT3B, DNMT3L, TET1, and TET3 vs. air oxygen, accompanied by significantly reduced 5mC and 5hmC levels. The downregulation of DNMT3B was associated with an increase in its promoter methylation. Coupled with the above, we also noted decreased HIF1A but increased HIF2A expression in physoxia-cultured PSCs versus air oxygen. In conclusion, PSCs display oxygen-sensitive methylation patterns that correlate with the transcriptional and translational regulation of the de novo methylase DNMT3B.


Assuntos
Metilação de DNA , Oxigênio , Células-Tronco Pluripotentes , DNA (Citosina-5-)-Metiltransferases/genética , Dioxigenases/genética , Epigênese Genética , Humanos , Oxigenases de Função Mista/genética , Oxigênio/fisiologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas/genética
10.
J Exp Biol ; 225(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34989396

RESUMO

It has been hypothesised that insects display discontinuous gas-exchange cycles (DGCs) as a result of hysteresis in their ventilatory control, where CO2-sensitive respiratory chemoreceptors respond to changes in haemolymph PCO2 only after some delay. If correct, DGCs would be a manifestation of an unstable feedback loop between chemoreceptors and ventilation, causing PCO2 to oscillate around some fixed threshold value: PCO2 above this ventilatory threshold would stimulate excessive hyperventilation, driving PCO2 below the threshold and causing a subsequent apnoea. This hypothesis was tested by implanting micro-optodes into the haemocoel of Madagascar hissing cockroaches and measuring haemolymph PO2 and PCO2 simultaneously during continuous and discontinuous gas exchange. The mean haemolymph PCO2 of 1.9 kPa measured during continuous gas exchange was assumed to represent the threshold level stimulating ventilation, and this was compared with PCO2 levels recorded during DGCs elicited by decapitation. Cockroaches were also exposed to hypoxic (PO2 10 kPa) and hypercapnic (PCO2 2 kPa) gas mixtures to manipulate haemolymph PO2 and PCO2. Decapitated cockroaches maintained DGCs even when their haemolymph PCO2 was forced above or below the putative ∼2 kPa ventilation threshold, demonstrating that the characteristic oscillation between apnoea and gas exchange is not driven by a lag between changing haemolymph PCO2 and a PCO2 chemoreceptor with a fixed ventilatory threshold. However, it was observed that the gas exchange periods within the DGC were altered to enhance O2 uptake and CO2 release during hypoxia and hypercapnia exposure. This indicates that while respiratory chemoreceptors do modulate ventilatory activity in response to haemolymph gas levels, their role in initiating or terminating the gas exchange periods within the DGC remains unclear.


Assuntos
Baratas , Animais , Dióxido de Carbono/análise , Baratas/fisiologia , Gases , Madagáscar , Oxigênio/fisiologia , Respiração
11.
Fish Physiol Biochem ; 48(1): 263-274, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35099685

RESUMO

Blunt snout bream plays an important role in freshwater aquaculture in China, but the development of its culture industry has been restricted by increasing hypoxia problem. Through the breeding of wild blunt snout bream populations (F0), a hypoxia-tolerant new variety (F6) was obtained. In this study, the new variety was stressed under low oxygen concentration (2.0 mg·L-1) for 4 and 7 days, the morphological structure of the gill tissue showed a striking change, the interlamellar cell mass (ILCM) volume reduced significantly (P < 0.05), and the lamellar respiratory surface area enlarged significantly (P < 0.05), compared to normoxic controls. After 7 days of oxygen recovery, gill remodeling was completely reversed. Additionally, the TUNEL-positive apoptotic fluorescence signals increased in the gills exposed to hypoxia up to 4 and 7 days; the apoptosis rate also increased significantly (P < 0.05). Under 4 and 7 days of hypoxia stress, the expression of anti-apoptotic gene Bcl-2 in the gills downregulated significantly (P < 0.05), with the significantly (P < 0.05) upregulated expression of pro-apoptotic gene Bad. Furthermore, under hypoxia stress, the activity or content of oxidative stress-related enzymes (superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione (GSH)) in gill tissue increased to varying degrees compared to normoxic controls. These results offer a new perspective into the cellular and molecular mechanism of hypoxia-induced gill remodeling in blunt snout bream and a theoretical basis for its hypoxia adaptation mechanism.


Assuntos
Cyprinidae , Cipriniformes , Brânquias , Hipóxia , Oxigênio/fisiologia , Animais , Apoptose , Cyprinidae/metabolismo , Cipriniformes/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Hipóxia/veterinária , Estresse Oxidativo
12.
Artigo em Inglês | MEDLINE | ID: mdl-34755650

RESUMO

Teleost fishes are diverse and successful, comprising almost half of all extant vertebrate species. It has been suggested that their success as a group is related, in part, to their unique O2 transport system, which includes pH-sensitive hemoglobin, a red blood cell ß-adrenergic Na+/H+ exchanger (RBC ß-NHE) that protects red blood cell pH, and plasma accessible carbonic anhydrase which is absent at the gills but present in some tissues, that short-circuits the ß-NHE to enhance O2 unloading during periods of stress. However, direct support for this has only been examined in a few species of salmonids. Here, we expand the knowledge of this system to two warm-water, highly active marine percomorph fish, cobia (Rachycentron canadum) and mahi-mahi (Coryphaena hippurus). We show evidence for RBC ß-NHE activity in both species, and characterize the Hb-O2 transport system in one of those species, cobia. We found significant RBC swelling following ß-adrenergic stimulation in both species, providing evidence for the presence of a rapid, active RBC ß-NHE in both cobia and mahi-mahi, with a time-course similar to that of salmonids. We generated oxygen equilibrium curves (OECs) for cobia blood and determined the P50, Hill, and Bohr coefficients, and used these data to model the potential for enhanced O2 unloading. We determined that there was potential for up to a 61% increase in O2 unloading associated with RBC ß-NHE short-circuiting, assuming a - 0.2 ∆pHa-v in the blood. Thus, despite phylogenetic and life history differences between cobia and the salmonids, we found few differences between their Hb-O2 transport systems, suggesting conservation of this physiological trait across diverse teleost taxa.


Assuntos
Peixes/fisiologia , Oxigênio/fisiologia , Perciformes/fisiologia , Animais , Eritrócitos/metabolismo , Proteínas de Peixes/metabolismo , Peixes/sangue , Hemoglobinas/metabolismo , Cinética , Oxigênio/sangue , Perciformes/sangue , Salmonidae/sangue , Salmonidae/fisiologia , Especificidade da Espécie
13.
J Cereb Blood Flow Metab ; 42(4): 642-655, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34743630

RESUMO

Oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) are markers of cerebral oxygen homeostasis and metabolism that may offer insights into abnormal changes in brain aging. The present study cross-sectionally related OEF and CMRO2 to cognitive performance and structural neuroimaging variables among older adults (n = 246, 74 ± 7 years, 37% female) and tested whether apolipoprotein E (APOE)-ε4 status modified these associations. Main effects of OEF and CMRO2 were null (p-values >0.06), and OEF interactions with APOE-ε4 status on cognitive and structural imaging outcomes were null (p-values >0.06). However, CMRO2 interacted with APOE-ε4 status on language (p = 0.002), executive function (p = 0.03), visuospatial (p = 0.005), and episodic memory performances (p = 0.03), and on hippocampal (p = 0.006) and inferior lateral ventricle volumes (p = 0.02). In stratified analyses, lower oxygen metabolism related to worse language (p = 0.02) and episodic memory performance (p = 0.03) among APOE-ε4 carriers only. Associations between CMRO2 and cognitive performance were primarily driven by APOE-ε4 carriers with existing cognitive impairment. Congruence across language and episodic memory results as well as hippocampal and inferior lateral ventricle volume findings suggest that APOE-ε4 may interact with cerebral oxygen metabolism in the pathogenesis of Alzheimer's disease and related neurodegeneration.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Disfunção Cognitiva , Oxigênio , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Apolipoproteína E4/genética , Apolipoproteínas E , Cognição/fisiologia , Feminino , Genótipo , Humanos , Masculino , Testes Neuropsicológicos , Oxigênio/fisiologia
14.
Crit Care ; 25(1): 312, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34461973

RESUMO

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2021. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2021 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .


Assuntos
Cérebro/fisiopatologia , Parada Cardíaca/complicações , Hipóxia Encefálica/etiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/normas , Parada Cardíaca/epidemiologia , Humanos , Hipóxia Encefálica/epidemiologia , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Monitorização Fisiológica/métodos , Oxigênio/sangue , Oxigênio/fisiologia , Pressão Parcial , Espectrofotometria Infravermelho/métodos , Espectrofotometria Infravermelho/estatística & dados numéricos
15.
Philos Trans R Soc Lond B Biol Sci ; 376(1830): 20200211, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34121464

RESUMO

In the 1940s, Scholander and Irving revealed fundamental physiological responses to forced diving of marine mammals and birds, setting the stage for the study of diving physiology. Since then, diving physiology research has moved from the laboratory to the field. Modern biologging, with the development of microprocessor technology, recorder memory capacity and battery life, has advanced and expanded investigations of the diving physiology of marine mammals and birds. This review describes a brief history of the start of field diving physiology investigations, including the invention of the time depth recorder, and then tracks the use of biologging studies in four key diving physiology topics: heart rate, blood flow, body temperature and oxygen store management. Investigations of diving heart rates in cetaceans and O2 store management in diving emperor penguins are highlighted to emphasize the value of diving physiology biologging research. The review concludes with current challenges, remaining diving physiology questions and what technologies are needed to advance the field. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.


Assuntos
Organismos Aquáticos/fisiologia , Aves/fisiologia , Mergulho/fisiologia , Mamíferos/fisiologia , Animais , Circulação Sanguínea/fisiologia , Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia , Oxigênio/fisiologia
16.
Commun Biol ; 4(1): 584, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990696

RESUMO

Most humans carry a mixed population of mitochondrial DNA (mtDNA heteroplasmy) affecting ~1-2% of molecules, but rapid percentage shifts occur over one generation leading to severe mitochondrial diseases. A decrease in the amount of mtDNA within the developing female germ line appears to play a role, but other sub-cellular mechanisms have been implicated. Establishing an in vitro model of early mammalian germ cell development from embryonic stem cells, here we show that the reduction of mtDNA content is modulated by oxygen and reaches a nadir immediately before germ cell specification. The observed genetic bottleneck was accompanied by a decrease in mtDNA replicating foci and the segregation of heteroplasmy, which were both abolished at higher oxygen levels. Thus, differences in oxygen tension occurring during early development likely modulate the amount of mtDNA, facilitating mtDNA segregation and contributing to tissue-specific mutation loads.


Assuntos
Linhagem da Célula , DNA Mitocondrial/química , DNA Mitocondrial/genética , Células-Tronco Embrionárias/metabolismo , Mitocôndrias/genética , Mutação , Oxigênio/fisiologia , Animais , Células-Tronco Embrionárias/citologia , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Seleção Genética
17.
Appl Physiol Nutr Metab ; 46(7): 753-762, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33960846

RESUMO

We sought to determine the impact of wearing cloth or surgical masks on the cardiopulmonary responses to moderate-intensity exercise. Twelve subjects (n = 5 females) completed three, 8-min cycling trials while breathing through a non-rebreathing valve (laboratory control), cloth, or surgical mask. Heart rate (HR), oxyhemoglobin saturation (SpO2), breathing frequency, mouth pressure, partial pressure of end-tidal carbon dioxide (PetCO2) and oxygen (PetO2), dyspnea were measured throughout exercise. A subset of n = 6 subjects completed an additional exercise bout without a mask (ecological control). There were no differences in breathing frequency, HR or SpO2 across conditions (all p > 0.05). Compared with the laboratory control (4.7 ± 0.9 cmH2O [mean ± SD]), mouth pressure swings were smaller with the surgical mask (0.9 ± 0.7; p < 0.0001), but similar with the cloth mask (3.6 ± 4.8 cmH2O; p = 0.66). Wearing a cloth mask decreased PetO2 (-3.5 ± 3.7 mm Hg) and increased PetCO2 (+2.0 ± 1.3 mm Hg) relative to the ecological control (both p < 0.05). There were no differences in end-tidal gases between mask conditions and laboratory control (both p > 0.05). Dyspnea was similar between the control conditions and the surgical mask (p > 0.05) but was greater with the cloth mask compared with laboratory (+0.9 ± 1.2) and ecological (+1.5 ± 1.3) control conditions (both p < 0.05). Wearing a mask during short-term moderate-intensity exercise may increase dyspnea but has minimal impact on the cardiopulmonary response. Novelty: Wearing surgical or cloth masks during exercise has no impact on breathing frequency, tidal volume, oxygenation, and heart rate However, there are some changes in inspired and expired gas fractions that are physiologically irrelevant. In young healthy individuals, wearing surgical or cloth masks during submaximal exercise has few physiological consequences.


Assuntos
Exercício Físico/fisiologia , Frequência Cardíaca , Máscaras , Oxiemoglobinas/metabolismo , Taxa Respiratória , Adulto , COVID-19/prevenção & controle , Dióxido de Carbono/fisiologia , Dispneia/fisiopatologia , Desenho de Equipamento , Teste de Esforço , Face , Feminino , Humanos , Masculino , Boca/fisiologia , Oxigênio/fisiologia , Pressão Parcial , Pressão , Temperatura Cutânea , Volume de Ventilação Pulmonar , Adulto Jovem
18.
PLoS Comput Biol ; 17(5): e1008861, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956786

RESUMO

The relationship between regional variabilities in airflow (ventilation) and blood flow (perfusion) is a critical determinant of gas exchange efficiency in the lungs. Hypoxic pulmonary vasoconstriction is understood to be the primary active regulator of ventilation-perfusion matching, where upstream arterioles constrict to direct blood flow away from areas that have low oxygen supply. However, it is not understood how the integrated action of hypoxic pulmonary vasoconstriction affects oxygen transport at the system level. In this study we develop, and make functional predictions with a multi-scale multi-physics model of ventilation-perfusion matching governed by the mechanism of hypoxic pulmonary vasoconstriction. Our model consists of (a) morphometrically realistic 2D pulmonary vascular networks to the level of large arterioles and venules; (b) a tileable lumped-parameter model of vascular fluid and wall mechanics that accounts for the influence of alveolar pressure; (c) oxygen transport accounting for oxygen bound to hemoglobin and dissolved in plasma; and (d) a novel empirical model of hypoxic pulmonary vasoconstriction. Our model simulations predict that under the artificial test condition of a uniform ventilation distribution (1) hypoxic pulmonary vasoconstriction matches perfusion to ventilation; (2) hypoxic pulmonary vasoconstriction homogenizes regional alveolar-capillary oxygen flux; and (3) hypoxic pulmonary vasoconstriction increases whole-lobe oxygen uptake by improving ventilation-perfusion matching.


Assuntos
Hipóxia/fisiopatologia , Modelos Biológicos , Circulação Pulmonar/fisiologia , Relação Ventilação-Perfusão/fisiologia , Algoritmos , Animais , Arteríolas/fisiopatologia , Fenômenos Biofísicos , Biologia Computacional , Simulação por Computador , Humanos , Pulmão/irrigação sanguínea , Pulmão/fisiopatologia , Oxigênio/fisiologia , Troca Gasosa Pulmonar/fisiologia , Ratos , Vasoconstrição/fisiologia , Vênulas/fisiopatologia
19.
Plant Commun ; 2(3): 100188, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34027398

RESUMO

When plants are exposed to hypoxic conditions, the level of γ-aminobutyric acid (GABA) in plant tissues increases by several orders of magnitude. The physiological rationale behind this elevation remains largely unanswered. By combining genetic and electrophysiological approach, in this work we show that hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to cytosolic K+ homeostasis and Ca2+ signaling. We show that reduced O2 availability affects H+-ATPase pumping activity, leading to membrane depolarization and K+ loss via outward-rectifying GORK channels. Hypoxia stress also results in H2O2 accumulation in the cell that activates ROS-inducible Ca2+ uptake channels and triggers self-amplifying "ROS-Ca hub," further exacerbating K+ loss via non-selective cation channels that results in the loss of the cell's viability. Hypoxia-induced elevation in the GABA level may restore membrane potential by pH-dependent regulation of H+-ATPase and/or by generating more energy through the activation of the GABA shunt pathway and TCA cycle. Elevated GABA can also provide better control of the ROS-Ca2+ hub by transcriptional control of RBOH genes thus preventing over-excessive H2O2 accumulation. Finally, GABA can operate as a ligand directly controlling the open probability and conductance of K+ efflux GORK channels, thus enabling plants adaptation to hypoxic conditions.


Assuntos
Arabidopsis/fisiologia , Homeostase , Potenciais da Membrana , Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido gama-Aminobutírico/metabolismo , Anaerobiose , Íons/metabolismo
20.
Circulation ; 143(21): 2061-2073, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33853383

RESUMO

BACKGROUND: Exertional intolerance is a limiting and often crippling symptom in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Traditionally the pathogenesis has been attributed to central factors, including ventilation/perfusion mismatch, increased pulmonary vascular resistance, and right heart dysfunction and uncoupling. Pulmonary endarterectomy and balloon pulmonary angioplasty provide substantial improvement of functional status and hemodynamics. However, despite normalization of pulmonary hemodynamics, exercise capacity often does not return to age-predicted levels. By systematically evaluating the oxygen pathway, we aimed to elucidate the causes of functional limitations in patients with CTEPH before and after pulmonary vascular intervention. METHODS: Using exercise cardiac magnetic resonance imaging with simultaneous invasive hemodynamic monitoring, we sought to quantify the steps of the O2 transport cascade from the mouth to the mitochondria in patients with CTEPH (n=20) as compared with healthy participants (n=10). Furthermore, we evaluated the effect of pulmonary vascular intervention (pulmonary endarterectomy or balloon angioplasty) on the individual components of the cascade (n=10). RESULTS: Peak Vo2 (oxygen uptake) was significantly reduced in patients with CTEPH relative to controls (56±17 versus 112±20% of predicted; P<0.0001). The difference was attributable to impairments in multiple steps of the O2 cascade, including O2 delivery (product of cardiac output and arterial O2 content), skeletal muscle diffusion capacity, and pulmonary diffusion. The total O2 extracted in the periphery (ie, ΔAVo2 [arteriovenous O2 content difference]) was not different. After pulmonary vascular intervention, peak Vo2 increased significantly (from 12.5±4.0 to 17.8±7.5 mL/[kg·min]; P=0.036) but remained below age-predicted levels (70±11%). The O2 delivery was improved owing to an increase in peak cardiac output and lung diffusion capacity. However, peak exercise ΔAVo2 was unchanged, as was skeletal muscle diffusion capacity. CONCLUSIONS: We demonstrated that patients with CTEPH have significant impairment of all steps in the O2 use cascade, resulting in markedly impaired exercise capacity. Pulmonary vascular intervention increased peak Vo2 by partly correcting O2 delivery but had no effect on abnormalities in peripheral O2 extraction. This suggests that current interventions only partially address patients' limitations and that additional therapies may improve functional capacity.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Oxigênio/fisiologia , Doença Crônica , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...